小明发现,利用轴对称做一个变化,在
BC上截取
CA′=
CA,连接
DA′,得到一对全等的三角形,从而将问题解决(如图2).
7.(平谷一模26)阅读下面材料:
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聪想:要想解决问题,应该对∠B进行分类研究.
∠B可分为“直角、钝角、锐角”三种情况进行探究.
第一种情况:当∠B是直角时,如图1,
在△ABC和△DEF中,AC=DF,BC=EF,
∠B=∠E=90°,根据“HL”定理,可以知道
Rt△ABC≌Rt△DEF.
第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是 ;
A.全等 B.不全等 C.不一定全等